\(\int \frac {\tan (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [130]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 125 \[ \int \frac {\tan (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}-\frac {1}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {1}{4 a^2 d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

-1/8*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(5/2)/d*2^(1/2)+1/4/a^2/d/(a+I*a*tan(d*x+c))^(1/2
)-1/5/d/(a+I*a*tan(d*x+c))^(5/2)+1/6/a/d/(a+I*a*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3607, 3560, 3561, 212} \[ \int \frac {\tan (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}+\frac {1}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {1}{6 a d (a+i a \tan (c+d x))^{3/2}}-\frac {1}{5 d (a+i a \tan (c+d x))^{5/2}} \]

[In]

Int[Tan[c + d*x]/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

-1/4*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])]/(Sqrt[2]*a^(5/2)*d) - 1/(5*d*(a + I*a*Tan[c + d*x])
^(5/2)) + 1/(6*a*d*(a + I*a*Tan[c + d*x])^(3/2)) + 1/(4*a^2*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3560

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[a*((a + b*Tan[c + d*x])^n/(2*b*d*n)), x] +
Dist[1/(2*a), Int[(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0]

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3607

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*((a + b*Tan[e + f*x])^m/(2*a*f*m)), x] + Dist[(b*c + a*d)/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \int \frac {1}{(a+i a \tan (c+d x))^{3/2}} \, dx}{2 a} \\ & = -\frac {1}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {1}{\sqrt {a+i a \tan (c+d x)}} \, dx}{4 a^2} \\ & = -\frac {1}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {1}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \sqrt {a+i a \tan (c+d x)} \, dx}{8 a^3} \\ & = -\frac {1}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {1}{4 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{4 a^2 d} \\ & = -\frac {\text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} a^{5/2} d}-\frac {1}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d (a+i a \tan (c+d x))^{3/2}}+\frac {1}{4 a^2 d \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.50 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.50 \[ \int \frac {\tan (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {-6+\operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},\frac {1}{2} (1+i \tan (c+d x))\right ) (5+5 i \tan (c+d x))}{30 d (a+i a \tan (c+d x))^{5/2}} \]

[In]

Integrate[Tan[c + d*x]/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(-6 + Hypergeometric2F1[-3/2, 1, -1/2, (1 + I*Tan[c + d*x])/2]*(5 + (5*I)*Tan[c + d*x]))/(30*d*(a + I*a*Tan[c
+ d*x])^(5/2))

Maple [A] (verified)

Time = 1.06 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.73

method result size
derivativedivides \(\frac {-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{8 a^{\frac {5}{2}}}-\frac {1}{5 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {5}{2}}}+\frac {1}{4 a^{2} \sqrt {a +i a \tan \left (d x +c \right )}}+\frac {1}{6 a \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}}{d}\) \(91\)
default \(\frac {-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{8 a^{\frac {5}{2}}}-\frac {1}{5 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {5}{2}}}+\frac {1}{4 a^{2} \sqrt {a +i a \tan \left (d x +c \right )}}+\frac {1}{6 a \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}}{d}\) \(91\)

[In]

int(tan(d*x+c)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/8/a^(5/2)*2^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))-1/5/(a+I*a*tan(d*x+c))^(5/2)+1
/4/a^2/(a+I*a*tan(d*x+c))^(1/2)+1/6/a/(a+I*a*tan(d*x+c))^(3/2))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 284 vs. \(2 (94) = 188\).

Time = 0.24 (sec) , antiderivative size = 284, normalized size of antiderivative = 2.27 \[ \int \frac {\tan (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {{\left (15 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {1}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} + a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 15 \, \sqrt {\frac {1}{2}} a^{3} d \sqrt {\frac {1}{a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{5} d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (17 \, e^{\left (6 i \, d x + 6 i \, c\right )} + 16 \, e^{\left (4 i \, d x + 4 i \, c\right )} - 4 \, e^{\left (2 i \, d x + 2 i \, c\right )} - 3\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \]

[In]

integrate(tan(d*x+c)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/120*(15*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(4*(sqrt(2)*sqrt(1/2)*(a^3*d*e^(2*I*d*x +
2*I*c) + a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) + a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 1
5*sqrt(1/2)*a^3*d*sqrt(1/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(a^3*d*e^(2*I*d*x + 2*I*c) +
 a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^5*d^2)) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - sqrt(2)*s
qrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(17*e^(6*I*d*x + 6*I*c) + 16*e^(4*I*d*x + 4*I*c) - 4*e^(2*I*d*x + 2*I*c) - 3)
)*e^(-5*I*d*x - 5*I*c)/(a^3*d)

Sympy [F]

\[ \int \frac {\tan (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {\tan {\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(tan(d*x+c)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral(tan(c + d*x)/(I*a*(tan(c + d*x) - I))**(5/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.93 \[ \int \frac {\tan (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\frac {15 \, \sqrt {2} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right )}{\sqrt {a}} + \frac {4 \, {\left (15 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} + 10 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a - 12 \, a^{2}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}}{240 \, a^{2} d} \]

[In]

integrate(tan(d*x+c)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/240*(15*sqrt(2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c)
 + a)))/sqrt(a) + 4*(15*(I*a*tan(d*x + c) + a)^2 + 10*(I*a*tan(d*x + c) + a)*a - 12*a^2)/(I*a*tan(d*x + c) + a
)^(5/2))/(a^2*d)

Giac [F]

\[ \int \frac {\tan (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int { \frac {\tan \left (d x + c\right )}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(tan(d*x+c)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(tan(d*x + c)/(I*a*tan(d*x + c) + a)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.73 \[ \int \frac {\tan (c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\frac {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}{6\,a}+\frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2}{4\,a^2}-\frac {1}{5}}{d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}-\frac {\sqrt {2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {a}}\right )}{8\,a^{5/2}\,d} \]

[In]

int(tan(c + d*x)/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

((a + a*tan(c + d*x)*1i)/(6*a) + (a + a*tan(c + d*x)*1i)^2/(4*a^2) - 1/5)/(d*(a + a*tan(c + d*x)*1i)^(5/2)) -
(2^(1/2)*atanh((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*a^(1/2))))/(8*a^(5/2)*d)